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‘La Sapienza’, I-00185 Roma, Italy

E-mail: Sergio.Caracciolo@mi.infn.it, gambassi@mf.mpg.de, m.gubinelli@dma.unipi.it and
Andrea.Pelissetto@roma1.infn.it

Received 16 April 2003
Published 13 May 2003
Online at stacks.iop.org/JPhysA/36/L315

Abstract
We define a transverse correlation length suitable to discuss the finite-size
scaling behaviour of an out-of-equilibrium lattice gas, whose correlation
functions decay algebraically with the distance. By numerical simulations
we verify that this definition has a good infinite-volume limit independent of
the lattice geometry. We study the transverse fluctuations as they can select
the correct field-theoretical description. By means of a careful finite-size
scaling analysis, without tunable parameters, we show that they are Gaussian,
in agreement with the predictions of the field theory proposed by Janssen,
Schmittmann, Leung and Cardy.

PACS numbers: 05.50.+q, 05.70.Jk, 05.70.Ln

While the statistical mechanics of systems in thermal equilibrium is well established, no
sound framework is available for nonequilibrium systems, although some interesting results
have recently been obtained [1]. At present, most of the research focuses on very specific
models. Among them, the driven lattice gas (DLG), introduced by Katz et al [2], has attracted
much attention since it is one of the simplest nontrivial models with a nonequilibrium steady
state [3]. The DLG is a generalization of the lattice gas. One considers a hypercubic lattice
and for each site x introduces an occupation variable nx , which can be either zero (empty site)
or one (occupied site). Then, one introduces an external field E along a lattice direction and a
generalization of the Kawasaki dynamics for the lattice gas with nearest-neighbour interactions.
In practice, one randomly chooses a lattice link 〈xy〉, and, if nx �= ny , proposes a particle
jump which is accepted with Metropolis probabilities w(β�H + βE�), where � = (1, 0,−1)
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for jumps (along, transverse, opposite) to the field direction, w(x) = min(1, e−x), and �H is
the variation of the standard lattice-gas nearest-neighbour interaction

H = −4
∑
〈xy〉

nxny. (1)

As usual, the parameter β plays the role of an inverse temperature. A nontrivial dynamics
is obtained by considering periodic boundary conditions in the field direction. Indeed, in
this case a particle current sets in, giving rise to a nonequilibrium stationary state that is
non-Gibbsian.

At half filling, the DLG undergoes a second-order phase transition. Indeed, at high
temperatures the steady state is disordered while at low temperatures the system is ordered:
the particles condense forming a strip parallel to the field direction. The two temperature
regions are separated by a phase transition occurring at the critical value βc(E) depending
on the field E. βc(E) converges to the Ising critical value βI for E → 0, and, interestingly
enough, increases with E, and saturates at a finite value βc(∞) when E diverges. Such a
transition is different in nature from the order/disorder one occurring in the lattice gas. For
instance, it is strongly anisotropic, i.e. fluctuations in density correlation functions behave in
a qualitatively different way depending on whether one considers points that belong to lines
that are parallel or orthogonal to the field E.

Some time ago Janssen, Schmittmann, Leung and Cardy [4] (JSLC) proposed a Langevin
equation for the coarse-grained density field, which incorporates the main features of the
DLG, i.e. a conserved dynamics and the anisotropy induced by the external field, and should
therefore describe the critical behaviour of the DLG. By means of a standard renormalization-
group (RG) analysis, critical exponents were exactly computed in generic dimension d for
2 < d < dc = 5. This theory predicts a strongly anisotropic behaviour with correlations
that increase with different exponents ν‖ and ν⊥ in the directions parallel and orthogonal
to the external field [3]. The corresponding anisotropy exponent � = (ν‖/ν⊥) − 1 can be
exactly computed, and it comes out to be � = (8 − d)/3. Another remarkable property of the
JSLC theory is that transverse fluctuations (i.e., those associated with transverse wave vectors)
become Gaussian in the critical limit. Extensive numerical simulations [5] have confirmed
many predictions of the JSLC theory, although some notable discrepancies still remain. The
conclusions of JSLC have been recently questioned by Garrido et al [6]. They argued that the
DLG for E = ∞ is not described by the JSLC theory but is rather in the same universality
class as the randomly driven lattice gas (RDLG). In this model, the direction of the external
field is chosen randomly at each time step, so that the global Ising symmetry is restored. The
RG analysis done in [7] leads to several notable differences. First, the upper critical dimension
is dc = 3. Second, � = 1+O((3−d)2), is well approximated by � = 1 in d = 2 (the case we
will consider in our numerical simulations). Finally, the transverse critical fluctuations are not
Gaussian. Clearly, this universality class is quite different from the JSLC class. Nevertheless,
some recent studies [8] claim that the d = 2 DLG belongs to the RDLG class.

In view of these contradictory results, new numerical investigations are necessary, in order
to decide which of these two theories really describes the DLG universality class. In this paper,
we will focus on the transverse fluctuations for the very simple reason that in the JSLC theory
there is a very strong prediction: transverse correlation functions are Gaussian. Therefore,
besides critical exponents, one can compute scaling functions of several observables exactly
and construct unambiguous tests against data.

A stringent way to test these JSLC predictions is to investigate the finite-size scaling
(FSS) behaviour of several observables. For an isotropic model on a lattice Ld , the FSS limit
corresponds to t ≡ 1 − β/βc → 0, L → ∞, keeping tL1/ν constant. This has to be modified
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for strongly anisotropic models [9] such as the DLG. It has been argued that, for a geometry
L‖ × Ld−1

⊥ , one has to keep fixed both combinations tL
1/ν‖
‖ and tL

1/ν⊥
⊥ , and therefore also the

so-called aspect ratio S� = L
1/(1+�)

‖ /L⊥. Then, if an observable O diverges at criticality as
t−zO , in a finite lattice one has

O(β; L‖, L) ≈ LzO/ν⊥fO(t−ν⊥/L, S�) (2)

where we have neglected subleading scaling corrections. To simplify the notation we write L
instead of L⊥ and, below, ξL for the transverse correlation length. In many numerical studies
equation (2) has been tested for several observables, but this can be a very weak test since
several parameters, βc, ν⊥, zO and �, must be tuned in order to fit the numerical data. A
stronger FSS test can be performed if one uses a suitably defined correlation length. In this
case, using a transverse (infinite-volume) correlation length ξ∞, equation (2) may be written
in the form

O(β; L‖, L) ≈ LzO/ν⊥ f̃ O(ξ∞(β)/L, S�). (3)

In this equation βc does not explicitly appear and zO and ν⊥ enter only through their ratio,
cancelling when one looks directly at the correlation length. One can also eliminate this
unknown by considering the ratio of the observables on two different lattices with transverse
sizes L and αL. In this case we have

O(β; α1+�L‖, αL)

O(β; L‖, L)
≈ FO

(
ξ(β; L‖, L)

L
, S�, α

)
(4)

where only � has to be fixed a priori.
In order to test equations (3) and (4), one has to define a finite-size correlation length.

In the DLG this is not obvious because correlation functions always decay algebraically at
large distances [10]. A parallel correlation length was defined in [11], but it suffers from
many ambiguities [3]. The definition of a transverse correlation length is even more difficult,
because of the presence of negative correlations at large distances [3, 5].

In this paper we propose a new definition that generalizes the second-moment correlation
length used in equilibrium systems. The basic observation is that the infinite-volume wall–
wall correlation function decays exponentially (i.e.,

〈 ∑
x‖ nx

∑
y‖ ny

〉
conn → e−κ |x⊥−y⊥|), so

that a transverse correlation length can be naturally defined in the thermodynamic limit. The
extension of this definition to finite volumes requires some care because of the conserved
dynamics, which makes the two-point function vanish at zero momentum. Here, we will use
the results of [12]. Given the Fourier transform G̃(q) of the two-point correlation function
〈nxn0〉, we focus on the transverse correlation G̃⊥(q) ≡ G̃({q‖ = 0, q⊥ = q}) and define

ξij ≡
√

1

q̂2
j − q̂2

i

(
G̃⊥(qi)

G̃⊥(qj )
− 1

)
(5)

where q̂n = 2 sin (πn/L) is the lattice momentum. If the infinite-volume transverse wall–wall
correlation function decays exponentially, G̃⊥(q) has a regular expansion in powers of q2 and

G̃−1
⊥ (q) ≈ χ−1

∞ [1 + b2q2 + O(q4)] (6)

where the coefficient b of q2 naturally defines a transverse correlation length ξ∞. We expect
equation (6) to hold also in a finite box. Then, starting from equation (5), it is easy to show that
ξij converges to ξ∞ as L → ∞, justifying our definition of finite-volume correlation length.
In the subsequent analysis we consider ξ13 as the finite-volume (transverse) correlation length
ξL(T ) ≡ ξ

(
T ; S1+�

� L1+�,L
)
. As in previous studies, we also define a finite-volume transverse

susceptibility as χL = G̃⊥(2π/L).
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Figure 1. τL for different inverse temperatures β. Filled (respectively open) circles refer to
geometries with aspect ratio S2 (respectively S1) fixed. Here S2 ≈ 0.200, S1 ≈ 0.106. Errors are
smaller than the size of the points.

As we already said, in the JSLC theory transverse fluctuations are Gaussian. This allows
us to compute the scaling function appearing in equation (4) for ξL and χL. If G̃⊥(q) is
Gaussian we have

Fξ(z, S2, α) = [1 − (1 − α−2)(2π)2z2]−1/2 (7)

with z ≡ ξL/L and Fχ(z, S2, α) = Fξ (z, S2, α)2. We can also compute f̃ ξ (x, S2), see
equation (3), obtaining

f̃ ξ (x, S2) = (4π2 + 1/x2)−1/2. (8)

In this paper we want to make a high-precision test of the theoretical predictions of the JSLC
theory, equations (7) and (8). We work in two dimensions at infinite driving field. Since we
wish to test the JSLC predictions we fix � = 2 and consider lattice sizes with S2 ≈ 0.200.
The largest lattice corresponds to L‖ = 884, L = 48. For each lattice size, we compute χL

and ξL for several values of β lying between 0.28 and 0.312.
As a preliminary test, we verify that our definition of ξL has a good thermodynamic limit.

For this purpose and reasons presented below, we introduce the following quantity:

τL(β) ≡ ξ−2
L (β) − 4π2L−2. (9)

In figure 1 we plot τL(β) versus 1/L2 at several inverse temperatures β. For each β, τL(β)

converges to a finite constant, showing that our definition has a finite infinite-volume limit.
Moreover, the same result is obtained by using sequences of lattices with S2 or S1 fixed: the
result does not depend on the way in which L‖ and L go to infinity. As expected, when the
temperature approaches the critical value, it is necessary to use larger and larger lattices to
see the convergence to the infinite-volume limit. For lattices with S2 fixed we observed an
intermediate region of values of L in which τL is apparently constant. Such a region widens
as β approaches the critical point and is therefore in excellent agreement with the relation

ξ−2
∞ (β) ≈ τL(β) = ξ−2

L (β) − 4π2L−2 (10)
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Figure 2. FSS curve for (a) the transverse correlation length and (b) the transverse
susceptibility at fixed S2 ≈ 0.200. Different symbols correspond to different lattice sizes:
L = 16 (◦), 18 (�), 20 (�), 22 (♦), 24 (�). The solid curve in (a) is the function Fξ (z, S2, 2)

defined in equation (7), while in (b) it is the function Fχ(z, S2, 2) = Fξ (z, S2, 2)2.

in the FSS limit L → ∞, β → βc. Note that the corrections beyond the one shown here
will depend in general on the chosen value of S2 and are particularly small for our choice
S2 ≈ 0.200. Equation (10) immediately gives equation (8). Thus, the results presented in
figure 1 are perfectly consistent with � = 2 and the JSLC prediction for f̃ ξ (x, S2).

We want now to make a precise test of equation (7). In figure 2(a) we report the results
of our simulations for the ratio ξ2L/ξL as a function of ξL/L for lattice sizes with fixed S2,
and we compare them with equation (7). We stress that the theoretical curve is not a fit to the
data: there is no free parameter to be chosen! Though the agreement is not perfect, we note
that the points closer to the theoretical curve correspond to larger lattices.

Using the universal function Fξ (z, S2, 2), we can extrapolate our data to infinite volume
using the general strategy of [13]. Correspondingly, we obtain βc = 0.312 694(18) and verify
that, for small t, ξ∞ ∼ t−1/2 as predicted by JSLC.

We can perform the same test for the susceptibility. In figure 2(b) we report our numerical
results for χL together with the theoretical JSLC prediction. We observe a good agreement
between theory and Monte Carlo results.

We have also measured the transverse Binder cumulant gL [3], observing that gL(βc) ∼
L−0.4(2) for L → ∞. Thus, the Binder cumulant vanishes at the critical point, again in
agreement with the idea that transverse fluctuations are Gaussian. The small power with
which gL(βc) vanishes hints at the presence of logarithmic corrections. Further details of our
analysis will be presented elsewhere [14].

To summarize, we carried out extensive Monte Carlo simulations on the DLG and
performed an incisive FSS analysis. We introduced a new and unambiguous measure of
the transverse correlation length, as well as a new scaling function. We determined not only
exponents, but also compared the measured scaling function to the theoretical one with no fit
parameters. Our conclusion is that the critical behaviour of transverse fluctuations is indeed
Gaussian, in perfect agreement with the theoretical predictions of JSLC.
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